

BadgerDAO eBTC
20/09/2023

Trust
Security

Smart Contract Audit

Trust Security BadgerDAO eBTC

Executive summary

Findings

Severity Total Fixed Acknowledged

High 1 1 -

Medium 7 6 1

Low 5 1 4

Centralization score

Centralized Decentralized

Signature

Category Stablecoin

Audited file count 35

Lines of Code 5211

Auditor Bernd
Artmüller,
Lambda

Time period 15/05-09/06

1, High

7,
Medium

5, Low

FINDINGS

Trust Security BadgerDAO eBTC

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 4

Versioning 4

Contact 4

INTRODUCTION 5

Scope 5

Repository details 6

About Trust Security 6

About the auditors 6

Disclaimer 6

Methodology 7

QUALITATIVE ANALYSIS 8

FINDINGS 9

High severity findings 9

TRST-H-1 Oracle results are combined incorrectly, resulting in a wrong stETH/BTC price 9

Medium severity findings 10

TRST-M-1 Wrong oracle recovery logic when no fallback is present 10

TRST-M-2 The function maxFlashLoan() returns wrong values 10

TRST-M-3 Temporary DoS due to stETH index syncing update frequency assumption 11

TRST-M-4 Macros deployed with LeverageMacroFactory.deployNewMacro are inoperative due to

mixed-up arguments for LeverageMacroReference 12

TRST-M-5 lastFeeOperationTime is not modified correctly in function _updateLastFeeOpTime()

leading to a slower base rate decay 12

TRST-M-6 getAccumulatedFeeSplitApplied() can revert in rare edge cases, causing redemptions to

fail 13

TRST-M-7 EBTCToken is not compliant with the EIP-2612 standard 14

Low severity findings 15

TRST-L-1 MAX_PRICE_DIFFERENCE_BETWEEN_ORACLES code and comment discrepancy 15

TRST-L-2 HintHelpers._calculatePartialRedeem() returns stale collateral amount 15

TRST-L-3 HintHelpers.getRedemptionHints() returns misleading partialRedemptionHintNICR hint if

partial redemption causes remaining CDP collateral to fall below the minimum allowed collateral 16

TRST-L-4 Renouncing the ownership of the FeeRecipient contract will send swept tokens to zero

address 17

TRST-L-5 Potential DoS due to Chainlink price feed decimals mismatch 17

Additional recommendations 19

Trust Security BadgerDAO eBTC

Use of deprecated Lido.getOracle() function 19

Open TODO comments left in the code 19

Outdated comments and references to the Liquity protocol 20

Use of SafeMath can be avoided to save gas 20

Missing NatSpec comments 20

Unused code 21

Centralization risks 22

No maximum fee enforced for ERC3156FlashLender 22

Governance can grant permissions to mint and burn eBTC tokens arbitrarily 22

Redemptions can be stopped 22

eBTC flash loan fee recipient can be purposely set to disable flash loan functionality 23

Systemic risks 24

stETH Dependency 24

Trust Security BadgerDAO eBTC

Document properties

Versioning

Version Date Description

0.1 09/06/2023 Client report

0.2 19/09/2023 Public release

0.3 20/09/2023 Team response

Contact

Trust

trust@trust-security.xyz

Trust Security BadgerDAO eBTC

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

• ./LiquidationLibrary.sol

• ./BorrowerOperations.sol

• ./CdpManager.sol

• ./PriceFeed.sol

• ./SortedCdps.sol

• ./LeverageMacroBase.sol

• ./CdpManagerStorage.sol

• ./EBTCToken.sol

• ./ActivePool.sol

• ./HintHelpers.sol

• ./Governor.sol

• ./SimplifiedDiamondLike.sol

• ./MultiCdpGetter.sol

• ./CollSurplusPool.sol

• ./EBTCDeployer.sol

• ./LeverageMacroFactory.sol

• ./LeverageMacroReference.sol

• ./LeverageMacroDelegateTarget.sol

• ./FeeRecipient.sol

• ./Migrations.sol

• ./Interfaces/ISortedCdps.sol

• ./Interfaces/ICdpManagerData.sol

• ./Interfaces/ICdpManager.sol

• ./Interfaces/IPriceFeed.sol

• ./Interfaces/IActivePool.sol

• ./Interfaces/IBorrowerOperations.sol

• ./Interfaces/ICollSurplusPool.sol

• ./Interfaces/IERC3156FlashLender.sol

• ./Interfaces/IFeeRecipient.sol

• ./Interfaces/IEBTCToken.sol

• ./Interfaces/IPool.sol

• ./Interfaces/IERC3156FlashBorrower.sol

• ./Interfaces/IFallbackCaller.sol

• ./Interfaces/IWETH.sol

Trust Security BadgerDAO eBTC

• ./Interfaces/ILiquityBase.sol

Repository details

• Repository URL: https://github.com/Badger-Finance/ebtc

• Commit hash: 181cb500190571798e32da053939d5fb1e5565f1

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Trust is the leading auditor at competitive auditing

service Code4rena, reported several critical issues to Immunefi bug bounty platform and is

currently a Code4rena judge.

About the auditors

Lambda is a Security Researcher and Developer with multiple years of experience in IT security

and traditional finance. This experience combined with his academic background in Data

Science, Mathematical Finance, and High-Performance Computing enables him to thoroughly

examine even the most complicated code bases, resulting in several top placements in various

audit contests.

Bernd is a blockchain and smart contract security researcher transitioning from a successful

full-stack web developer career. His ability to quickly grasp new concepts and technologies

and his attention to detail have helped him become a top auditor in the blockchain space.

Having conducted 40+ audits, Bernd has identified numerous vulnerabilities across a wide

range of DeFi protocols, wallets, bridges, and VMs.

Disclaimer

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

https://github.com/Badger-Finance/ebtc

Trust Security BadgerDAO eBTC

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

Trust Security BadgerDAO eBTC

Qualitative analysis

Metric Rating Comments
Code complexity

Good Project kept code as
simple as possible,
reducing attack risks

Documentation

Excellent An extensive
documentation was
provided for the audit.
Furthermore, many
security-relevant
assumptions are
documented within the
codebase.

Best practices

Excellent The project follows
industry standards
whenever possible.

Centralization risks

Good The system is non-
upgradeable and the
privileges of the owner
are limited.

Trust Security BadgerDAO eBTC

Findings

High severity findings

TRST-H-1 Oracle results are combined incorrectly, resulting in a wrong stETH/BTC price

• Category: Mathematical error

• Source: PriceFeed.sol

• Status: Fixed

Description

The function _formatClAggregateAnswer() uses the following formula to get

the stETH/BTC price based on the ETH/BTC and stETH/ETH prices:

stETH/BTC =
10dec(stETH/ETH)−dec(ETH/BTC) ∗ ETH/BTC ∗ 1018

stETH/ETH

However, this is wrong. Consider the case when the ETH/BTC rate is 0.06803827 and the

stETH/ETH 0.99. We have ETH/BTC=6803827 and stETH/ETH=990000000000000000 (because

of the decimals). Plugging this in the formula above results

in stETH/BTC=68725525252525252, i.e. a stETH/BTC rate of 0.068725525. Therefore,

stETH/BTC > ETH/BTC (i.e., you get more BTC for on stETH), which is wrong when stETH/ETH

< 1 (i.e., you get less than 1 ETH for one stETH).

While the difference is relatively small when stETH/ETH is around 1, it can get very large for

stETH/ETH << 1 (i.e., depeg events), resulting in completely wrong collateralization ratios.

Recommended mitigation

Correct the formula:

stETH/BTC =
ETH/BTC ∗ stETH/ETH ∗ 10dec(stETH/ETH)−dec(ETH/BTC)

1018

Team Response

Fixed here.

https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/PriceFeed.sol#L798

Trust Security BadgerDAO eBTC

Medium severity findings

TRST-M-1 Wrong oracle recovery logic when no fallback is present

• Category: Logical errors

• Source: PriceFeed.sol

• Status: Fixed

Description

The PriceFeed contract supports the deactivation of the fallback oracle by

passing address(0) to setFallbackCaller(). While the contract works fine afterwards as long as

the Chainlink oracle works properly, it can never recover from a Chainlink failure

(i.e., Status.bothOraclesUntrusted). In such a scenario, a stale price will always be used until

a new, valid fallback oracle is set.

Moreover, if the Chainlink oracle is nonfunctioning and the PriceFeed state remains in

Status.bothOraclesUntrusted, adding a fallback oracle does not change the state and the

returned price remains stale.

Recommended mitigation

When there is no fallback oracle, the recovery logic should be different to avoid scenarios

where the prices are not updated again. The best that can be done in such a situation is to use

the chainlink price again as soon as it is not broken anymore.

Additionally, adding a fallback oracle should transition the state accordingly to prevent a stale

price.

Team Response

Fixed here.

TRST-M-2 The function maxFlashLoan() returns wrong values

• Category: Logical errors

• Source: BorrowerOperations.sol

• Status: Acknowledged

Description

The function maxFlashLoan() returns type(uint112).max, but there currently is no maximum

enforced within flashLoan() and the real limit would therefore be type(uint256).max.

Recommended mitigation

Either enforce the limit or change the maxFlashLoan() function. In general, consider

potentially introducing a reasonable limit. There are for instance protocols that do unchecked

operations on uint112 balances because they assume that an overflow is not feasible. Having

no limit could lead to problems with such protocols. Of course, the underlying issue is not

https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/PriceFeed.sol#L225

Trust Security BadgerDAO eBTC

within eBTC in such situations, but trying to avoid any integration issues might still be

desirable.

Team Response

Acknowledged.

TRST-M-3 Temporary DoS due to stETH index syncing update frequency assumption

• Category: Logical errors

• Source: CdpManagerStorage.sol

• Status: Fixed

Description

The _syncIndex() function in the CdpManagerStorage contract, which is called from the

claimStakingSplitFee() function, updates the stFPPSg index and ensures the index is updated

with a specific frequency (currently twice a day) within a particular timeframe. This assertion

is made by the require statement in the _requireValidUpdateInterval() function, reverting if

the index is attempted to be updated too frequently.

function _requireValidUpdateInterval() internal view {
 require(
 block.timestamp - lastIndexTimestamp > INDEX_UPD_INTERVAL,
 "CdpManager: update index too frequent"
);
}

The protocol assumes that calling Lido’s stETH getPooledEthByShares() function with the

DECIMAL_PRECISION = 1e18 constant leads to currently no more than two modifications per

day, coinciding with stETH's current rebasing frequency of approximately 24 hours.

However, the index may change in between these expected updates. This can be caused by

invoking Lido.unsafeChangeDepositedValidators() by the Lido owner, or since Lido (i.e., stETH)

is an upgradeable contract, other unforeseen ways to modify the amount of pooled ETH may

be introduced, leading to a more frequent change in the index.

Should the index change more frequently than expected, and _newIndex != _oldIndex in line

501 of CdpManagerStorage evaluates to true, the subsequently called

requireValidUpdateInterval() function will revert. This situation could temporarily cause a

Denial of Service (DoS) to eBTC's core functions, given that the _syncIndex() function,

specifically, the claimStakingSplitFee() function, is called in many places elsewhere. This DoS

would persist until updating the index is once again permitted.

Recommended mitigation

We recommend reassessing the need to enforce a limit on the update frequency of the index

and consider eliminating this constraint.

Team response

Fixed by always syncing to the latest index.

https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/CdpManager.sol#L58

Trust Security BadgerDAO eBTC

TRST-M-4 Macros deployed with LeverageMacroFactory.deployNewMacro are

inoperative due to mixed-up arguments for LeverageMacroReference

• Category: Logical errors

• Source: LeverageMacroFactory.sol

• Status: Fixed

Description

Deploying a new macro with the LeverageMacroFactory.deployNewMacro() function creates

a new contract instance of LeverageMacroReference. However, the arguments supplied to

the constructor, sortedCdps and stETH, are incorrect and mixed up.

Consequently, those values are passed to the LeverageMacroBase constructor in the wrong

order as well, leading to broken functionality.

Recommended mitigation

We recommend swapping the sortedCdps and stETH arguments supplied to the

LeverageMacroReference constructor in the LeverageMacroFactory.deployNewMacro()

function.

Team response

Fixed here.

TRST-M-5 lastFeeOperationTime is not modified correctly in function

_updateLastFeeOpTime() leading to a slower base rate decay

• Category: Logical errors

• Source: CdpManager.sol

• Status: Fixed

Description

Whenever eBTC is redeemed, a redemption fee is charged. This fee consists of a variable base

rate (baseRate) and a fixed fee floor (redemptionFeeFloor). The variable base rate decays

with time and increases based on the redeemed eBTC amount.

Whenever eBTC is redeemed, the decayed base rate is calculated with the

_calcDecayedBaseRate() function, based on the number of minutes that have passed since

the last recorded lastFeeOperationTime. If at least one minute has passed since the previous

lastFeeOperationTime, it is subsequently updated to the current time via the

_updateLastFeeOpTime() function.

function _updateLastFeeOpTime() internal {
 uint timePassed = block.timestamp > lastFeeOperationTime
 ? block.timestamp - lastFeeOperationTime

https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/LeverageMacroFactory.sol#L51

Trust Security BadgerDAO eBTC

 : 0;

 if (timePassed >= SECONDS_IN_ONE_MINUTE) {
 lastFeeOperationTime = block.timestamp;
 emit LastFeeOpTimeUpdated(block.timestamp);
 }
}

However, if 1.999 minutes have passed, the base rate only decays for 1 minute, while 1.999

minutes are added to lastFeeOperationTime. In the worst-case scenario, the base rate will

only decay for 1 minute for every 1.999 minutes that have passed. As a result, the base rate is

likely to experience a slower decay than anticipated.

Recommended mitigation

Add the rounded down number of elapsed minutes, retrieved by the

_minutesPassedSinceLastFeeOp() function, to the lastFeeOperationTime in the

_updateLastFeeOpTime() function.

Team response

Fixed by adding the exact amount used.

TRST-M-6 getAccumulatedFeeSplitApplied() can revert in rare edge cases, causing

redemptions to fail

• Category: Logical errors

• Source: CdpManagerStorage.sol

• Status: Fixed

Description

The getAccumulatedFeeSplitApplied() function in the CdpManagerStorage contract calculates

the applied fee split for a given CDP based on the accumulated stETH staking rewards and

returns both the fee split and the remaining CDP collateral. The remaining collateral is

calculated as the difference between the CDP collateral and the fee split.

The fee split, _feeSplitDistributed, is calculated as the product of the CDP's stake and the

difference between the current and previous stETH staking reward index.

function getAccumulatedFeeSplitApplied(
 bytes32 _cdpId,
 uint _stFeePerUnitg,
 uint _stFeePerUnitgError,
 uint _totalStakes
) public view returns (uint, uint) {
 if (
 stFeePerUnitcdp[_cdpId] == 0 ||

https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/CdpManager.sol#L692

Trust Security BadgerDAO eBTC

 Cdps[_cdpId].coll == 0 ||
 stFeePerUnitcdp[_cdpId] == _stFeePerUnitg
) {
 return (0, Cdps[_cdpId].coll);
 }

 uint _oldStake = Cdps[_cdpId].stake;

 uint _diffPerUnit = _stFeePerUnitg - stFeePerUnitcdp[_cdpId];
 uint _feeSplitDistributed = _diffPerUnit > 0 ? _oldStake * _diffPerUnit
: 0;

 uint _scaledCdpColl = Cdps[_cdpId].coll * DECIMAL_PRECISION;

 require(
 _scaledCdpColl > _feeSplitDistributed,
 "LiquidationLibrary: fee split is too big for CDP"
);

 return (_feeSplitDistributed, (_scaledCdpColl - _feeSplitDistributed) /
DECIMAL_PRECISION);
}

The getAccumulatedFeeSplitApplied() function ensures that the CDP collateral exceeds the fee

split, in order to prevent a subtraction underflow error from occurring. However, since this

function is called in numerous places throughout the protocol, a failed assertion can lead to

the inability to redeem, liquidate or adjust the affected CDP. Most importantly, this could

result in a Denial of Service for eBTC redemptions, as these redemptions are processed CDP

by CDP.

The conditions necessary for this scenario to happen involve the Cdps[_cdpId].stake value,

which grows over time due to the "corrected stake" mechanism, surpassing Cdps[_cdpId].coll

by a substantial factor, and _diffPerUnit reaching or exceeding DECIMAL_PRECISION = 1e18.

This implies that _stFeePerUnitg is greater than or equal to 2e18, occurring if 1 stETH equals

2 ETH (i.e., the accumulated stETH staking rewards ROI is 100%). Given the current stETH APR

of 4.7%, this would take approximately 15 years.

Recommended mitigation

Consider handling the case where the fee split surpasses the CDP collateral more gracefully,

e.g., by setting the fee split to the CDP collateral and the remaining collateral to zero.

Team response

Fixed by adding this edge case check.

TRST-M-7 EBTCToken is not compliant with the EIP-2612 standard

• Category: Specification issues

• Source: EBTCToken.sol

https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/CdpManagerStorage.sol#L618

Trust Security BadgerDAO eBTC

• Status: Fixed

Description

The EBTCToken contract intends to adhere to the EIP-2612: Permit Extension for EIP-20 Signed

Approvals standard. However, the DOMAIN_SEPARATOR() function, which is required by the

standard, is missing. Instead, the incorrectly named domainSeparator() function is

implemented.

Consequently, the EBTCToken contract is not compliant with the EIP-2612 standard.

Recommended mitigation

Rename the domainSeparator() function to comply with the EIP-2612 standard.

Team response

FIxed by adding the function.

Low severity findings

TRST-L-1 MAX_PRICE_DIFFERENCE_BETWEEN_ORACLES code and comment

discrepancy

• Category: Specification issues

• Source: PriceFeed.sol

• Status: Acknowledged

Description

The comment within _bothOraclesSimilarPrice() states that the maximum allowed deviation

should be 3%, but the value of MAX_PRICE_DIFFERENCE_BETWEEN_ORACLES corresponds

to a maximum allowed deviation of 5%.

Recommended mitigation

Change the comment or the implementation, depending on what the intended value is.

Team response

Acknowledged.

TRST-L-2 HintHelpers._calculatePartialRedeem() returns stale collateral amount

• Category: Logical errors

• Source: HintHelpers.sol

• Status: Acknowledged

Description

https://eips.ethereum.org/EIPS/eip-2612
https://eips.ethereum.org/EIPS/eip-2612
https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/EBTCToken.sol#L169

Trust Security BadgerDAO eBTC

The HintHelpers._calculatePartialRedeem() function calculates the remaining CDP collateral

amount after a partial redemption. However, the returned newColl value is stale and does not

reflect the actual collateral amount after the partial redemption. This is because the received

collateral amount (collToReceive) is not deducted from the collateral amount (newColl).

Consequently, this leads to a misleading value of partialRedemptionNewColl in

HintHelpers.getRedemptionHints().

Recommended mitigation

We recommend deducting the received collateral amount (collToReceive) from the returned

collateral amount (newColl) in the HintHelpers._calculatePartialRedeem() function.

Team response

Acknowledged.

TRST-L-3 HintHelpers.getRedemptionHints() returns misleading

partialRedemptionHintNICR hint if partial redemption causes remaining CDP collateral

to fall below the minimum allowed collateral

• Category: Logical errors

• Source: HintHelpers.sol

• Status: Acknowledged

Description

If a partial redemption would lead to a CDP's remaining collateral falling below the minimum

allowed collateral (MIN_NET_COLL), the HintHelpers.getRedemptionHints() function returns

a misleading partialRedemptionHintNICR hint. This occurs as the last evaluated

partialRedemptionHintNICR hint, determined by the _calculatePartialRedeem() function in

line 103, is not reset to 0 before being returned to the caller.

This is misleading as there is no partial redemption in this case. Hence, the

partialRedemptionHintNICR hint should be 0.

This finding does not pose any direct security impact despite the misleading hint.

Recommended mitigation

We recommend resetting the partialRedemptionHintNICR hint to 0 in the

HintHelpers.getRedemptionHints() function if the CDP's remaining collateral falls below the

minimum allowed collateral in line 111.

Team response

Acknowledged.

Trust Security BadgerDAO eBTC

TRST-L-4 Renouncing the ownership of the FeeRecipient contract will send swept

tokens to zero address

• Category: Logical errors

• Source: FeeRecipient.sol

• Status: Acknowledged

Description

The FeeRecipient contract is assumed to receive fees collected by the protocol. An authorized

user can call the sweepToken() function to transfer the specified token and amount to the

current owner of the contract, depicted by the owner() function. However, if the ownership

of the contract got renounced via the Ownable.renounceOwnership function, the owner()

function will return the zero address.

function sweepToken(address token, uint amount) public requiresAuth {
 uint256 balance = IERC20(token).balanceOf(address(this));
 require(amount <= balance, "FeeRecipient: Attempt to sweep more than
balance");

 IERC20(token).safeTransfer(owner(), amount);
}

Consequently, sweeping tokens results in an unrecoverable loss of tokens due to the transfer

to the zero address.

Recommended mitigation

Consider preventing renouncing the ownership of the FeeRecipient contract by overriding the

Ownable.renounceOwnership() function, or, alternatively, add a parameter to the

sweepToken() function to specify the recipient of the swept tokens.

Team response

Acknowledged.

TRST-L-5 Potential DoS due to Chainlink price feed decimals mismatch

• Category: Overflow flaws

• Source: PriceFeed.sol

• Status: Fixed

Description

While calculating the price of stETH/BTC in the _formatClAggregateAnswer() function, the

value of _ethBtcAnswer is scaled by the difference in decimals between stETH/ETH (18

decimals) and ETH/BTC (8 decimals).

function _formatClAggregateAnswer(
 int256 _ethBtcAnswer,
 int256 _stEthEthAnswer,

Trust Security BadgerDAO eBTC

 uint8 _ethBtcDecimals,
 uint8 _stEthEthDecimals
) internal view returns (uint256) {
 return (((10 ** (_stEthEthDecimals - _ethBtcDecimals)) *
 (uint256(_ethBtcAnswer) * LiquityMath.DECIMAL_PRECISION)) /
uint256(_stEthEthAnswer));
}

However, in the unlikely event that the decimals of one of the two used Chainlink price feeds

changes, causing _stEthEthDecimals to be less than _ethBtcDecimals, the result of the

calculation will revert with an underflow error. This leads to a denial of service of the eBTC

protocol.

Recommended mitigation

Consider the possibility of _stEthEthDecimals being less than _ethBtcDecimals and scale

_ethBtcAnswer accordingly.

Team response

Fixed and fuzzed by adding logic that adapts to decimals.

.

https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/PriceFeed.sol#L798

Trust Security BadgerDAO eBTC

Additional recommendations

Trust Security was engaged for a pre-audit check in which some additional recommendations

(regarding the test suite, deployment setup, CI/CD pipeline, and operational security) were

already outlined.

Use of deprecated Lido.getOracle() function

Syncing the global stFPPSg index via the CdpManagerStorage._syncIndex() function too

frequently is prevented by checking the time elapsed since the last sync in the

CdpManagerStorage._requireValidUpdateInterval() function. The function reverts if the time

elapsed is less than or equal to the minimum update interval INDEX_UPD_INTERVAL.

The INDEX_UPD_INTERVAL is initialized and updated by calling the

CdpManager.syncUpdateIndexInterval() function. This function calls the Lido.getOracle()

function to retrieve the beacon chain config (epochsPerFrame, slotsPerEpoch,

secondsPerSlot) used to calculate the minimum update interval.

However, the Lido.getOracle() function is deprecated.

Consider retrieving the beacon chain config from Lido's HashConsensus contract in the

CdpManager.syncUpdateIndexInterval() function:

ILidoLocator _locator = collateral.getLidoLocator();
BaseOracle _accountingOracle = BaseOracle(_locator.accountingOracle());
IConsensusContract _consensusContract =
_accountingOracle.getConsensusContract();

(, uint256 epochsPerFrame,) = _consensusContract.getFrameConfig();
(uint256 slotsPerEpoch, uint256 secondsPerSlot,) =
_consensusContract.getChainConfig();

Team response

Fixed by reading the index from stETH: _readStEthIndex.

Open TODO comments left in the code

The code contains several TODO comments, referring to possible unaddressed improvements

and optimizations. It is considered good practice to assess and address those comments

before deploying the code to production.

Moreover, the Governor contract contains a few functions (getActiveRoles(),

getCapabilitiesForTarget(), getCapabilitiesByRole()) that revert with an error string stating

that they are not implemented yet. We therefore ignored these functions during this audit. It

https://github.com/lidofinance/lido-dao/blob/cadffa46a2b8ed6cfa1127fca2468bae1a82d6bf/contracts/0.4.24/Lido.sol#L737
https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/CdpManagerStorage.sol#L494

Trust Security BadgerDAO eBTC

is recommended to ensure that these functions will also be audited at least once before

deploying the protocol.

Team response

Acknowledged.

Outdated comments and references to the Liquity protocol

As eBTC is a modified fork of the Liquity protocol, the code contains several outdated

comments mentioning Liquity and Liquity-specific mechanisms. For instance, the ActivePool

contract includes a comment referring to Liquity's Stability pool and default pool:

/**
 * The Active Pool holds the collateral and EBTC debt (but not EBTC tokens)
for all active cdps.
 *
 * When a cdp is liquidated, it's collateral and EBTC debt are transferred
from the Active Pool, to either the
 * Stability Pool, the Default Pool, or both, depending on the liquidation
conditions.
 */

To prevent confusion and to ensure the comments explain the underlying eBTC mechanisms,

it is recommended to update the comments and remove references to Liquity.

Team response

Acknowledged.

Use of SafeMath can be avoided to save gas

Due to using Solidity version 0.8, overflow protection is implemented by default at the

language level. Consequently, using OpenZeppelin's SafeMath library is redundant and can be

removed to save gas.

Team response

Fixed by removing safeMath in the code.

Missing NatSpec comments

It is recommended that Solidity contracts are fully annotated using NatSpec for all public

interfaces (everything in the ABI) as stated in the Solidity NatSpec documentation. We

https://docs.soliditylang.org/en/v0.8.20/natspec-format.html

Trust Security BadgerDAO eBTC

observed that appropriate @notice, @param and @return fields are missing throughout the

codebase in many publicly available functions.

Team response

Acknowledged and improved.

Unused code

The code contains several unused functions and variables. It is recommended to remove all

unused code to prevent any confusion and to reduce the attack surface. For instance, the

following function and struct properties are unused:

• CdpManager.sol: decayBaseRateFromBorrowing()

• ICdpManagerData.sol: LiquidationTotals.totalCollToRedistribute and

LiquidationValues.collToRedistribute

Team response

Fixed.

Trust Security BadgerDAO eBTC

Centralization risks

No maximum fee enforced for ERC3156FlashLender

The variable maxFeeBps should be 1,000 BPS according to the comment. But it is set

to MAX_BPS, i.e., 10,000 BPS. Therefore, there is currently no maximum fee and a value of up

to 100% could be set.

Team response

Fixed here.

Governance can grant permissions to mint and burn eBTC tokens arbitrarily

eBTC can be minted via the EBTCToken.mint() and burned with the EBTCToken.burn() function.

Both functions are permissioned and only callable by the BorrowerOperations or

CDPManager contract or an authorized address (i.e., governance).

In the latter case, the supply of eBTC changes, which may lead to undercollateralized eBTC if

additional tokens are minted.

The rationale behind allowing governance (or any other authorized address) to mint/burn

eBTC seems to be extending the system and composing with other protocols.

Nonetheless, it imposes a certain risk for users holding eBTC and undermines the trust

assumptions.

Team response

Acknowledged.

Redemptions can be stopped

The CdpManager contract has a function setRedemptionFeeFloor() which allows governance

to update the redemptionFeeFloor variable. The function allows a broad range of values, it

just enforces that the updated value is above MIN_REDEMPTION_FLOOR_FEE and below

DECIMAL_PRECISION (100%). A redemption fee of 100% would lead to a situation where

redemptions no longer work, as the function _calcRedemptionFee() would always revert. The

redemption fee floor can therefore be abused by governance to set unreasonably high fees or

even stop redemptions completely.

Additionally, by setting the value of beta, the denominator in the base rate calculation for

redemptions, to either zero, causing a division by zero error, or a very large value,

redemptions can be stopped as well.

https://github.com/Badger-Finance/ebtc/blame/1b0a073075484670f24947e0f455031144d3a1e0/packages/contracts/contracts/Dependencies/ERC3156FlashLender.sol#L11

Trust Security BadgerDAO eBTC

Team response

Acknowledged.

eBTC flash loan fee recipient can be purposely set to disable flash loan functionality

eBTC flash loans, implemented via the flashLoan() function in the BorrowerOperations

contract, are subject to an optional fee. After the callback succeeded, the borrowed amount

plus the optional fee is transferred to the feeRecipientAddress and the amount of eBTC is

burned.

The eBTC implementation, EBTCToken, validates the recipient address of a transfer in the

_requireValidRecipient() function and reverts if the tokens are transferred to the zero address,

the eBTC token contract itself, the CDP manager contract (cdpManagerAddress), and the

borrower operations contract (borrowerOperationsAddress).

The feeRecipientAddress in the BorrowerOperations contract can be changed by governance

to any address except the zero address. However, setting the feeRecipientAddress to any of

the prohibited eBTC recipient addresses will cause the transfer to revert and effectively

disables the flash loan functionality.

It is advised to add additional checks to the setFeeRecipientAddress() function in the

BorrowerOperations contract to prevent setting the feeRecipientAddress to any of the

prohibited eBTC recipient addresses.

Team response

Acknowledged, flashLoaning is also pausable by governance.

Trust Security BadgerDAO eBTC

Systemic risks

stETH Dependency

eBTC inherently depends on stETH and its correct functioning. Any bug or vulnerability in

stETH may impact eBTC significantly and lead to a temporary or permanent loss of funds.

Moreover, the immutable eBTC contracts build on top of the mutable stETH contracts: While

it is very unlikely that Lido significantly changes the stETH token, the token contract is

mutable and thus upgradeable. The interface and internal workings could change over time.

In contrast, the eBTC protocol remains immutable. Moreover, stETH's capability to pause

certain functions, most notably the ability to transfer tokens (see here), poses a risk to eBTC.

Should stETH be paused, eBTC would be impacted significantly. The following stETH

functionalities can be paused:

• token transfer

• handling oracle report (i.e., rebasing)

• depositing ETH into Lido (i.e., minting stETH)

A pause of these functionalities may lead to a significant reduction of the stETH/ETH rate

(because of market panic), in which case a lot of positions could become liquidatable.

However, this would fail when token transfers are paused. Such a black swan scenario could

therefore lead to a (temporary) depeg of eBTC.

These risks are present for any protocol that builds on top of stETH, and they cannot be

avoided completely. However, users should be aware of them.

Team response

Acknowledged.

https://github.com/lidofinance/lido-dao/blob/cadffa46a2b8ed6cfa1127fca2468bae1a82d6bf/contracts/0.4.24/StETH.sol#L445

		2023-09-21T11:19:31+0200
	Trust

